Search results

Search for "extremely thin absorber" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • in photo-electrochemical cells, thin film cells, extremely thin absorber (ETA) cells, and hybrid solar cells based on a planar underlay or on nano- or mesostructured scaffolds [15][16][17][18][19][20][21][22]. Studies on ETA Sb2S3 cells, which became the basis for respective hybrid solar cells, were
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Uniform Sb2S3 optical coatings by chemical spray method

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Ilona Oja Acik,
  • Arvo Mere and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 198–210, doi:10.3762/bjnano.10.18

Graphical Abstract
  • chemical bath deposition (CBD) [3][4], spin coating [5], atomic layer deposition (ALD) [6] or chemical spray pyrolysis (CSP) [7] method, has been applied in extremely thin absorber (ETA) solar cells due to its excellent absorption coefficient in the visible light spectrum (1.8 × 105 cm−1 at 450 nm) [1][2
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2019

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • demonstrated an efficiency exceeding 7% when assembled in an extremely thin absorber configuration deposited via chemical bath deposition. More recently, less complex, planar geometries were obtained from simple spin-coating approaches, but the device efficiency still lags behind. We compare two processing
  • accurate in the regimes depicted in Figure 5a and 5b [73]. In Figure 5a the SQ limit of the Voc and nid = 1 is assumed. In Figure 5b the FF–Voc relation is shown for the boundary cases of nid = 1 and nid = 2. Development of Sb2S3 technology. Solar cells with extremely thin absorber architecture [1][2][3][4
  • thin absorber (ETA) architecture, which is similar to that of dye-sensitized solar cells [21]. A thin absorber layer of around 10 nm [22] is deposited on a mesoporous TiO2 scaffold and the pores are subsequently filled with a hole transport material (HTM). Progress in terms of device efficiency can be
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

Low-cost plasmonic solar cells prepared by chemical spray pyrolysis

  • Erki Kärber,
  • Atanas Katerski,
  • Ilona Oja Acik,
  • Valdek Mikli,
  • Arvo Mere,
  • Ilmo Sildos and
  • Malle Krunks

Beilstein J. Nanotechnol. 2014, 5, 2398–2402, doi:10.3762/bjnano.5.249

Graphical Abstract
  • % increase (from 4.6 to 7.5 mA/cm2) of the short-circuit current density was observed when 2.5 mL of the precursor solution was deposited onto the rear side of the solar cell. Keywords: Au nanoparticles; chemical spray pyrolysis; extremely thin absorber; plasmon resonance; solar cell; Introduction The cost
  • with a band gap of 1.5 eV that is often used as a photovoltaic absorber. Previously published, related work by our research group regarding CIS-based solar cells includes: the synthesis and properties of CIS [5][6], application of CIS in extremely thin absorber solar cells based on ZnO nanorods [7
PDF
Album
Letter
Published 12 Dec 2014
Other Beilstein-Institut Open Science Activities